Lecture 10

Gidon Rosalki
2025-06-08

1 The hierarchy theorems
Theorem 1 (Hierarchy theorem of time). For every function f that is calculable in O (f), it holds that:
Time (o (f (n))) & Time(f (n)log(n))
(Yes, that is meant to be a little o)
Theorem 2 (Hierarchy theorem of space). For every function f that is calculable in space O (f) it holds that
Space (o (f (n))) & Space (f (n))

(Yes, that is meant to be a little o)

1.1 Hierarchy theorem in time

We will return to the proof that shows that R C RE , and if we update it with limitation on time / space, then we get
the Hierarchy theorems above. Reminder:

Arn = {<M> , Wt M(U}) = Qacc}
We will assume by contradiction that there exists a DTM H that decides Arps. This is to say

H(<M> aw) = Gacc <& M(’LU) = (acc

We will define D ((M)) = H ({(M),(M)), and D ((M)) = D ({(M)) (which is to say, swapping between gacc, Grej- 1f
(D) = 0

<<D>) <D>) = (rej

(D) = treg

D ((D)) = gaecc => D
— H
= D
and if
D ((D)) = aej D ((D)) = ace
H ((D),(D)) = gace

D (b) = Qacc

Ll

so in both cases, we arrive at a contradiction.
Let us define a language:

A ={((M),w) : M (w) = gacc AN Running M on w finishes in at most f (Jw|) steps}

We may decide the language A by using a UTM (in how much time?) We will show, with a similar proof to that of Ay,
that we may not decide A)f in time o (f (n)).
Let us assume by contradiction that there is a TM H that decides Ay in o (f (n)) steps. We will use H; to build D:

D ((M)) = Hy ((M) , (M))

We will then use D to build D: o
D ((M)) = D ({(M))

Which is to say, a swapping of gacc and ¢yej. So, what does D (<ﬁ>) return?
If D (<ﬁ>) = acc, then D (<5>) = (rej = Hj (<5> , <ﬁ>) = Grej, and so D (<5>) = (rej, Which is a contradiction.

(Note: The runtime of Hy is o (f (n)), and therefore so is D, and D)
If D (<ﬁ>) = (rej, then D (<ﬁ>) = Qace = Hj (<E> , <5>) = Qacc, and so we get that D (<E>) = (acc, Which is once
more a contradiction.

We have shown here that there exists a language A; ¢ Time (o (f (n))). It is clear that A is decidable, the question
is in what runtime. We may decide Ay as follows: Initialise a timer for f (Jw|), run the UTM U: U ((M),w), and after
simulating each step, we reduce the value of the timer by 1. If the timer reaches 0, we will stop and return g, and if
before the timer reaches 0, the simulation of M reaches gacc, Or grej, then we will return accordingly. This machine is
clearly a deciding machine of Ay, but how much time does it take? We need to consider initialising the timer, and reducing
its value every step. There is an implementation of a UTM U, that simulates the run of f (n) steps, in O (f (n)log (f (n)))
steps of U. We will require that the function f is calculable in time O (f (n)). This is to say, given 1™, we may compute
7™ in O (fbrn).

Conclusion: For every function f, that is computable in O (f), it is true that

Timeo (f (n)) & Time (f (nlog (f (n))))

Example: n? is calculable in O (n?), and also n? = o (n*!), and also n? - log (n?) = O (n?), and so Time (n?) C
Time (n?).

From all this, we may conclude that P C Exp, for example there is a language L € Time (2"), and L ¢ Time (nk) for
any constant k.

1.2 Hierarchy theorem of space

For every function f that is computable in space O (f) it is true that

Space (o (f (n))) & Space (f (n))

The proof is almost identical to the proof for time, however we will simply replacement the time limitation at every point
of the proof, with a limitation of space. The theorem is stronger for space (tighter separation), since there exists a UTM
Y that simulates M (w) in space O (f (n)) where f (n) is the space limitation of the run of M.

We can limit the space, similarly to the timer, where we begin by adding a symbol to every cell in the tape that we are
allowed to use, and if the simulation tries to go beyond these cells, we reject.

2 Savitch theorem

NSpace (f (n)) C Space (f* (n))

For every function f (n) that is computable in space O (f (n))
From this we may conclude that
NPSPACE = PSPACE

Reminder:

PSPACE = |] SPACE (n*)
k=1

NPSPACE = | J NSPACE (n")
k=1
Proof of conclusion: PSPACE C NPSPACE - this is trivial, since every DTM is a special case of an NTM with the
same space limitation. We will show the second direction: Let there be L € NPSPACE, which is to say, there exists k,
some constant, such that L € NPSPACFE (nk) By the Savitch theorem,

L € SPACE ((n*)") = SPACE (n**) C PSPACE

2.1 Savitch proof

For a TM M, and an input w, we will define the configuration graph Gs,.,. The nodes of Gz, will be all the possible
configurations. There exists an directed edge from u to v if and only if the configuration represented by v is the con-
figuration that follows the configuration that is represented by u. For a DTM, for every configuration, there is a single
following configuration, and therefore for every node, there is a single edge that leaves. However, in an NTM, there are
many configurations that follow a given configuration, and therefore for every node, there may be more than one edge
that leaves it.

We will define 2 nodes in the graph: The node ¢y which is the starting configuration: ¢y = gqow. Additionally, the node
Cacc Which represents the accepting configuration cacc = Gace-

Reminder: We have shown in the proof of Cook’s theorem, that w.l.o.g. there is a single accepting configuration. Note
that the change to M in order so that there is a single accepting configuration does not increase the space complexity.
We will note that w € L < there is an accepting run of M (w) < in the graph Gy ., there is a directed path from cg t0 Cace-

S0, how many nodes are there in G s,., or rather, how many possible configurations are there?
Num configurations = Number of states x Head locations x Tape contents = |Q| - O (f (n)) - |T|

It is clear that we may decide L through a DTM as follows: We will create Gs,,. Run on it BFS, or DFS, starting from
co- We will return g, if and only if we arrive at cacc.

Correctness is trivial.

Space complexity is > the number of nodes in G, which is exponential in f (n).

For a language L € NSPACE (f (n)), there exists an NTM M, which runs in space O (f (n)). We want to show that
there exists a DTM M, that decides L, in O (f? (n)) space.

The procedure Reach (u,v,t) answers the question: Does there exist a path in Gy, that starts at w, and finishes at
v, with length < ¢? We will show a DTM that computes Reach.

Reach 1
Input: wu,v,t
Output: bool
1: if u = v then

2 return T

3. end if

4: if v is a successor of u then
5: return T
6
7
8
9

: end if
. if t <1 then
: return F
: end if
10: for m € V (Gprw) do

t
11: q1 < Reach (u, m, Lw

t
12: q2 < Reach <u, m, bJ)
13: if ¢1 A g2 then

14: return T’
15: end if
16: end for

17: return F

Note: We will initialise the run with u = ¢y and v = caec, and t = #conf. The correctness is trivial, and we will
analyse the runtime: For every recursive call we will create a new 3-tuple, but 2 calls of the same depth are used for the
same space. We want to analyse the space complexity in M’. A check of if u = v does not require any additional space.
A check of if v follows u does not require any additional space. How much space is required for a single 3-tuple?

u=1og (IO (f (m) - T|°Y™)

= log|Q|+ O (log (f (n))) + O (f (n)) - log[T'|
=0 (f(n)

Similarly, v requires O (f (n)), and ¢ requires O (f (n)). So, in total for the whole 3-tuple: O (f (n)). The maximum
number of 3-tuples is the maximum depth of the recursion, which is in total O (log (#conf)), which is to say O (f (n)), so
in total, our space complexity is O (f2 (n))

So the space complexity is sublinear: Examples L = Space (log (n)), and NL = NSpace (log (n))

We will create a TM that is suitable for discussing sublinear space. We will use a machine with 3 tapes: Input, work,
and output, where input and work are read only, and output is write only. The head of the output tape can, at every run
step, either print a letter, or not. If it prints, it moves one step to the right, and does not return. Let us define §:

§:QxUxD—=QxTx{XUd}

The run space is measured purely from the work tape, and so the output tape cannot return to the left, since this would
increase the work space.

Consider the example: Language A € Space (log (n)) L if and only if There exists a DTM M that decides A, and in
the space O (log (n)). This is to say that M is a machine of 2 tapes, input and work. The space limitation on the work
tape is O (log (n)).

Similarly, B € N L if there exists an NTM that decides B, and in space that is logarithmic, which is to say, 2 tapes, input,
and work, with a size limitation on the work tape of O (log (n)).

Theorem 3 (L C P). This is to say that A€ L —> A € P, or if there is a DTM that is run in logarithmic space, then
there is a DTM that runs in polynomial time.

Proof . Let there be M a DTM that decides A in a logarithmic amount of space. How many configurations does this
machine have? Number of states, times the location of the input head, times the location of the work head, times the
contents of the work tape:

Q| - n- O (log (n)) - 0™ = |Q| - 1 - O (log (n)) - 2'082(IT)-Ollogz(n)
=0 (n)

Where c is some constant. Overall, the number of configurations is O (nd), where d is some constant. It is clear that M
does not return to the same configuration in a run, since it if did, it would be in an infinite loop.

Conclusion, the runtime of M on w < the number of possible configurations, which is O (nd), which is to say, a polynomial
runtime, and so A € P O

Theorem 4. If M calculates the function f, and M is a DTM, that runs in space O (log (n)), then the length of the input
|f (w)| s bound from above by a polynomial.

Proof . The proof is similar to the previous theorem. The number of configurations is bound by a polynomial, and
therefore the number of steps, and the number of prints, are also bound by a polynomial. O

	The hierarchy theorems
	Hierarchy theorem in time
	Hierarchy theorem of space

	Savitch theorem
	Savitch proof

