
Lecture 2
Gidon Rosalki

2025-03-30

Notice: If you find any mistakes, please open an issue at https://github.com/robomarvin1501/notes_computability_complexity

1 Reminder
Σ - the alphabet we may use, Σ∗ all the words of the alphabet Σ. A language on Σ: L ⊆ Σ∗. A DFA = (Σ, Q, q0, F, δ).
L (A) ⊆ Σ∗ is the collection of words that A accepts. We say that A determines the language L (A). L = L (A) ,∃A =⇒
L is regular. REG is the collection of all the regular languages. Something to note is that most of the languages are not
in REG. Note that L1, L2 ∈ REG =⇒ L1, L1 ∩ L2, L1 ∪ L2 ∈ REG

Given an automaton A = (Σ, Q, q0, F, δ), what is the meaning δ (q, α)? It represents the state to which we will move
from q when we call the letter α. Let us define the word w = w′α:

δ∗ (q, w) = δ (δ∗ (q, w′) , α)

δ∗ (q, ε) = q

So δ∗ (q, w) is the state to which we will arrive if we begin at q, and move over all the letters of w. It is important to note
that an automaton only defines δ, and δ defines δ∗. We may now write that

L (A) = {w ∈ Σ∗ : δ∗ (q0, w) ∈ F}

Theorem 1. L1, L2 ∈ REG =⇒ L1 ∪ L2 ∈ REG
L1, L2 ∈ REG =⇒ L1 ∩ L2 ∈ REG

Proof . Without loss of generality, we may assume that L1 and L2 are on the same alphabet Σ. How can this be without
loss of generality? If L1 ⊆ Σ∗

1 and L2 ⊆ Σ∗
2, then we may take Σ = Σ1 ∪Σ2, and add a state called sink to the DFAs, such

that there are no letters that leave the sink, and all the new letters not dealt with by the original DFA send to the sink.
Let there be A = (Σ, Q, q0, F, δ), such that L (A) = L1, and B = (Σ, P, p0, G, η), such that L (B) = L2.
The concept is that we will build an automaton with the set of states Q × P . The word w will reach that state
(δ∗ (q0, w) , η

∗ (p0, w)).
Given that the concept works, the automaton that we will build is

C = (Σ, Q× P, (q0, p0) , (F × P) ∪ (Q×G) , ξ)

and if we’re proving intersection then
C = (Σ, Q× P, (q0, p0) , F ×G, ξ)

It is sufficient to prove that the concept is true in order to finish. When ξ is defined by

ξ ((q, p) , α) = (δ (q, α) , η (p, α))

We will finish by showing that for every word w it is true that

ξ∗ ((q0, p0) , w) = (δ∗ (q0, w) , η
∗ (p0, w))

We will prove this by induction on |w| = n.
Basis n = 0: In this case w = ε.

ξ∗ ((q0, p0) , ε) = (q0, p0)

= (δ∗ (q0, ε) , η
∗ (p0, ε))

1

https://github.com/robomarvin1501/notes_computability_complexity

Step n → n+ 1: Given w of length n+ 1, we will write w = w′α.

ξ∗ ((q0, p0) , w
′α)

def
= ξ (ξ∗ ((q0, p0) , w

′) , α)

Induction hypothesis = ξ ((δ∗ (q0, w
′) , η∗ (p0, w

′)) , α)

def
= (δ (δ∗ (q0, w

′) , α) , η (η∗ (p0, w
′) , α))

def
= (δ∗ (q0, w

′α) , η∗ (p0, w
′α))

= (δ∗ (q0, w) , η
∗ (p0, w))

If L1, L2 are languages on Σ, then
L1 · L2 = {w · z : w ∈ L1 ∧ z ∈ L2}

For example, if L1 = {aa, ab} , L2 = {ab, ac}, then

{abac, aaab, abab} ⊆ L1 · L2

We will also define

Lk
1 = L1 · L1 · · · · · L1

L0
1 = {ε}

Lm · Lk = Lm+k

L · ∅ = ∅

L∗ =

∞⋃
k=0

Lk

The final line is called the Kleene closure of L.

1.0.1 Examples

L = {an : n ≥ 0 ∧ 2 | n} =⇒ L∗ = L

L = {a} =⇒ L∗ = {an : n ≥ 0}
L = {a, b} =⇒ L∗ = {a, b}∗

Theorem 2. 1. ∅, {ε} , {a} ∈ REG, which is to say, languages of size 1, or the empty language

2. REG is closed to union, concatenation, and a Kleene closure

3. Every language in REG may be built from languages of type 1 through operation of type 2

2 NFAs
In this section we will define

1. Non-deterministic Finite Automaton

2. We will define NREG, all the languages that characterise NFAs

3. We will show that NREG is closed to concatenation and Kleene closures

4. We will show that NREG is equivalent to REG

Given a word, the automaton has a set of runs that finish. The automaton A accepts a word w if there is a correct
run on A that finishes in the accepting state.
Example: L1 = {w ∈ {a, b} : w finishes with aaa ∨ aab}.

The concept is that we will leave the starting state only on the third to last letter:

2

q0start q1 q2 q3

a, b

a a a, b

Using the above NFA, on the word abaab, we may have the runs q0, q0, q0, q0, q0, q0, q1, x, x, x, x, q0, q0, q0, q1, q2, q3,
and of these 3, only the last run is accepted. Let us call this NFA A. We will say that A identifies L (A), rather than
determines, since it is non deterministic.

Let there be A,B to NFAs, such that A identifies L, and B identifies L′. We want to show that L,L′ ∈ NREG =⇒
L ∪ L′ ∈ NREG. We can do this by simply pretending A and B to be the same automaton, all their start states are the
new NFA’s start states. If the word is located in one of the languages L or L′, then the same run that identifies it in the
original NFA will also identify it in our new NFA.

Example 1. Given the language L2 = {ababb}, write an NFA that identifies L2

Solution.
q0start q1 q2 q3 q4 q5

a b a b b

Example 2. L3 = {All the words that may be made fromababb by deleting some or all of the letters}. For example, aa ∈
L3.

Solution. To achieve this we will add the epsilon path to each of the nodes, which allows us to start from any given node,
and skip any given node:

q0start q1 q2 q3 q4 q5

a

ε

a

ε

a

ε

a

ε ε

a

3

	Reminder
	Examples

	NFAs

