
Lecture 3
Gidon Rosalki

2025-04-06

Notice: If you find any mistakes, please open an issue at https://github.com/robomarvin1501/notes_computability_complexity

1 Reminder
A legal run on w ∈ Σ∗ from q ∈ Q: For the letters w = w1 . . . wk is a series of states q0, . . . , qk, such that q0 = q, and
qi ∈ δ

(
qi−1, wi

)
.

A run on w is a correct run on w that starts at a state within Q0.
The extended transition function of A: δ∗ : 2Q × Σ∗ → 2Q where δ∗ (S,w) is

1. The collection of states that we may get to from a correct run on w that starts in some state within S.

2. S when w = ε, otherwise when w = w′α.

Theorem 1. 1 and 2 are equivalent definitions for δ on w

Proof. This is not a proof, but the proof is by induction.

Theorem 2. NREG = REG

Proof . • REG ⊆ NREG: This is true since a DFA is turned into an NFA through a very simple change in minor
definitions.

• NREG ⊆ REG: Let there be L ∈ NREG, and A = (Σ, Q,Q0, F, δ), an NFA that recognises it. We will build an
automaton Ad that decides L through Ad. We know that Ad has the same alphabet, but what is its states?
The concept: Ad will have a state for every subset S ⊆ Q, when running Ad on w, Ad will get to state δ∗ (Q0, w).
Considering this, let us define Ad =

(
Σ, 2Q, Q0, Fd, δd

)
, where

Fd = {S ⊆ Q : S ∩ F 6= ∅}
δd (S, α) = δ∗ (S, α)

Our theorem is that L (Ad) = L (A), and it is sufficient to show that δ∗ (Q0, w) = δ∗d (Q0, w), since if we do show
this then we get w ∈ L (Ad) ⇔ δ∗d (Q0, w) ∈ Fd ⇔ δ∗ (Q0, w) ∈ Fd ⇔ δ∗ (Q0, w) ∩ F 6= ∅ ⇔ w ∈ L (A).
By induction on |w|:
Basis: δ∗ (Q0, ε) = Q0 = δ∗ (Q0, ε).
w = w′α:

δ∗d (Q0, w
′α) = δd (δ

∗
d (Q0, w

′) , α)

= δd (δ
∗ (Q0, w

′) , α)

= δ∗ (δ∗ (Q0, w
′) , α)

= δ∗ (Q0, w
′α)

as required.

Do we absolutely need the exponential growth of states? Yes. Example: Let there be Σ = {0, 1}, for k ∈ N, we will
define

Lk := Σ∗ · {1} · Σk−1

The NFA

1

https://github.com/robomarvin1501/notes_computability_complexity

q0start q1 q2 . . . qk−1 qk

0, 1

1 0, 1 0, 1 0, 1 0, 1

recognises the alphabet through k + 1 states.

Definition 1.1 (Myhill-Nerode (MN)). If L is a language on Σ, and x, y ∈ Σ∗. We will say that x and y are not
MN-equivalent with respect to L if there exists a word z ∈ Σ∗ such that xz ∈ L ∧ yz /∈ L ∨ xz /∈ L ∧ yz ∈ L. In this case
we will write x �L y and we will write that z is the differentiating suffix. If there is no differentiation suffix, then we will
write that x ∼L y, and say that they are equivalent with respect to L.

Benefits:

1. We will assume that x ∼L y and x ∈ L, then y ∈ L

2. We will assume that x �L y, and L = L (A) where A ∈ DFA, then when running on x and on y, A will reach
different states, since otherwise A would reach the same state on xz, and on yz for every suffix z.

3. If there are n words in Σ∗, that are not equivalent, then A has at least n states. Or If in the ratio ∼L there are k
equivalency sets, then in the DFA that decides L, there are at least k states.

Conclusion If there are ∞ equivalency states ∼L, then L /∈ REG.
To sum up, if ∼L has at least k sets, then in the automaton that decides L, there are at least k states, therefore if there
is A that decides L, then the number of sets in ∼L is at most n

For every 2 different words x, y ∈ {0, 1}∗, x �Lk
y: For words such as these, there exists 1 ≤ i ≤ k such that xi 6= yi.

We will define z = 0k−i+1. This way the ith letter is k before the end of both words. This is to say that in xz, the kth
letter before the end is xi, and is yi in yz. So only one of xz and yz will be in the language Lk, and so y �Lk

x, and so
the automaton that decides Lk has at least 2k states.

Σ = {a, b}, L = {anbn : n ≥ 0}. For every m 6= n, an �L am. This comes from anbn ∈ L, ambn /∈ L, and so L /∈ REG.
Symbol: [w]L the equivalency set of w with respect to L (as defined in discrete maths)

Theorem 3. If L is a language on Σ, and in ∼L there are k < ∞ equivalency sets, then L ∈ REG. and there is a DFA
for L with k states.

Proof . Concept: We will symbolise the set of equivalency sets in ∼L as Q. These will be the states, and thus δ∗ (q0, w) =
[w]L.
Building A: A = (Σ, Q, [ε]L , F, δ) where

F = {[w]L : w ∈ L}
δ ([w]L , α) = [wα]L

We need to verify that if [w]L = [y]L, then [wα]L = [yα]L:

[w]L = [y]L =⇒ w ∼L y

=⇒ ∀z wz ∈ L ⇔ yz ∈ L

=⇒ ∀z′ wαz′ ∈ L ⇔ yαz′ ∈ L

=⇒ wα ∼L yα

=⇒ [wα]L = [yα]L

2

	Reminder

