Lecture 3

Gidon Rosalki
2025-04-06

Notice: If you find any mistakes, please open an issue at https://github. com/robomarvinl501/notes_computability_complexii

1 Reminder

A legal run on w € ¥* from g € Q: For the letters w = wy ... wy is a series of states ¢°,...,¢", such that ¢° = ¢, and
¢ €6 (¢ wi).
A run on w is a correct run on w that starts at a state within Q.
The extended transition function of A: §* : 29 x ¥* — 29 where §* (S, w) is
1. The collection of states that we may get to from a correct run on w that starts in some state within S.
2. S when w = ¢, otherwise when w = w’a.

Theorem 1. 1 and 2 are equivalent definitions for § on w

Proof. This is not a proof, but the proof is by induction.

Theorem 2. NREG = REG

Proof . e REG C NREG: This is true since a DFA is turned into an NFA through a very simple change in minor
definitions.

e NREG C REG: Let there be L € NREG, and A = (2,Q,Qo, F,0), an NFA that recognises it. We will build an
automaton Ay that decides L through A;. We know that Ay has the same alphabet, but what is its states?
The concept: Ay will have a state for every subset S C @), when running A; on w, Ay will get to state 6* (Qo, w).
Considering this, let us define Ay = (Z, 29 Qo, Fy, 6d), where

Fy={SCQ:SNF#0)
04 (S, ) = 6* (S, @)

Our theorem is that L (Aq) = L(A), and it is sufficient to show that 6* (Qo,w) = 8% (Qo,w), since if we do show
this then we get w € L (Aq) < 6 (Qo,w) € Fq & 0" (Qo,w) € Fy & 6" (Qo,w) NF # 0 < w e L(A).
By induction on |w]:
Basis: 6* (Qo,e) = Qo = 0" (Qo, €).
w=w'a:
93 (Qo,w'a) = 04 (07 (Qo,w') , @)

=0da (0" (Qo,w') , )

=06" (0" (Qo, w') , o)
3" (Qo, w'e)

as required.
0

Do we absolutely need the exponential growth of states? Yes. Example: Let there be ¥ = {0,1}, for k € N, we will
define
Ly =% {1} . 2k

The NFA


https://github.com/robomarvin1501/notes_computability_complexity

0,1

0,1 0,1 0,1 0,1

recognises the alphabet through k + 1 states.

Definition 1.1 (Myhill-Nerode (MN)). If L is a language on ¥, and x,y € ¥*. We will say that x and y are not
MN-equivalent with respect to L if there exists a word z € ¥* such that xz € LAyz ¢ LV xz ¢ L ANyz € L. In this case
we will write © =~ y and we will write that z is the differentiating suffix. If there is no differentiation suffiz, then we will
write that x ~p, y, and say that they are equivalent with respect to L.

Benefits:
1. We will assume that z ~; y and x € L, then y € L

2. We will assume that x ~p y, and L = L(A) where A € DF A, then when running on x and on y, A will reach
different states, since otherwise A would reach the same state on xz, and on yz for every suffix z.

3. If there are n words in X*, that are not equivalent, then A has at least n states. Or If in the ratio ~j, there are k
equivalency sets, then in the DFA that decides L, there are at least k states.

Conclusion If there are co equivalency states ~,, then L ¢ REG.
To sum up, if ~;, has at least k sets, then in the automaton that decides L, there are at least k states, therefore if there
is A that decides L, then the number of sets in ~, is at most n

For every 2 different words x,y € {0,1}", 2 »1, y: For words such as these, there exists 1 <1 < k such that x; # v;.
We will define z = 0F~*+1. This way the ith letter is k before the end of both words. This is to say that in xz, the kth
letter before the end is x;, and is y; in yz. So only one of xz and yz will be in the language Ly, and so y ~r, «, and so
the automaton that decides L has at least 2F states.

Y ={a,b}, L ={a"b™ : n > 0}. For every m # n, a" =, a™. This comes from a™b" € L,a™b" ¢ L, and so L ¢ REG.

Symbol: [w], the equivalency set of w with respect to L (as defined in discrete maths)

Theorem 3. If L is a language on X, and in ~, there are k < oo equivalency sets, then L € REG. and there is a DF A
for L with k states.

Proof . Concept: We will symbolise the set of equivalency sets in ~p, as ). These will be the states, and thus §* (¢o, w) =
[w]p -
Building A: A =(%,Q, [¢]; , F,0) where
F={[w], :welL}
6 ([w]y, ,a) = [wa],

We need to verify that if [w], = [y];, then [wa]; = [ya],:

W, =W, = w~ry
== Yzwzelsyzel
= VYV waz € L& yar €L
— wa ~y Yo
= [wa], = [yalp



	Reminder

