
Lecture 4
Gidon Rosalki

2025-04-20

We have extensively discussed DFAs, and mostly solved the problem (not entirely, but for our purposes). These could
only take input, and would change state according to them, and only them. However, what if there is a state machine,
that not only takes inputs, but also takes input from the environment? Let us consider for example a state machine that
takes in the input from some sensor (temperature, air pressure, etc), and outputs light or dark depending on the input.
Since we are also dependent on external values, and we want more options for outputs, we do not want to simply have
true or false as our output, but more options. So we shall have states, and letters that move us from state to state, and
for these transitions, the transitions will also be annotated with the output. For example:

q0start q1

a, ON
b, OFF
a, OFF
b, ON

1 Turing machines (TMs)
A Turing machine has a tape, comprised of cells, and the read/write head which points at a cell. In each cell of the tape
there is inscribed a letter. Additionally, the TM has a state machine, and it is currently located in a state. Every time
it reads a letter from the tape, it transitions to a state, and emits both a letter, and a direction (R/L). Emitting a letter
means rewriting the current cell’s letter (before moving on the tape). For example:

q0start

a, b, R

b, a, R

So here, when the TM reads an a, replaces it with b and moves right on the tape. For when we reach the end of the tape,
we will define the letter ”␣”, which is an empty letter. We can additionally then add on to our state machine a final state
as follows:

q0start q1

a, b, R

b, a, R

␣, ␣, L

1.1 Runs on TMs
Let there be a series of cells ω1, . . . , ωk on the tape. We shall state that ω1 is the starting cell, so at ω1 we know that the
machine is in the initial state (generally q0). We can call this entire definition the configuration. Should we consider the
following machine:

q0start q1
ω1, α,R

Then the configuration C0 will be the series of states q0 → ω1, . . . , ωk. Should we take the configuration of α, q1 →
ω2, . . . , ωk, then we are in configuration C1, which is the subsequent configuration to C0. The final configuration is a
configuration that finishes in a final state.

1



Now that we have configurations, we may define a run on a TM: A partial run on the TM T, with input ω is a series
(finite or infinite) of configurations C0, C1, . . . such that C0 = q0 → ω1, . . . , ωk is the starting configuration in the run of
T on ω, and for all i > 0, Ci is the following configuration of Ci−1. The run is full if it is finite, and finishes in a final
configuration, or if it is infinite.

The runtime of a TM T on the input ω is the length of the full run on ω minus 1.
The output is the content of the tape at the end of the full run (if it is finite). Configuration: This can be shown
graphically as α1, . . . , q → αi, . . . , αk, but we may represent it as well as follows: α1 . . . αi−1qαi . . . αk

1.2 Successor
Let us consider an problem with the input x ∈ {0, 1}∗, and the output is x + 1. We will note that adding 1 to a
binary number is simply converting all the rightmost 1s that touch the rightmost bit to 0, and converting the first 0 to 1
(101011 → 101100). To create a TM that does this, we will do the following: Firstly, we will find the rightmost edge of
the input:

q0start q1

1, 1, R

0, 0, R

␣, ␣, L

Next, we will convert all the 1s to 0s until we find 0. We will convert it to 1, and finish.

q0start q1 qF

1, 1, R

0, 0, R

␣, ␣, L

1, 0, L
0, 1, R

␣, 1, R

The runtime will be O (2n) + O (2) (= O (n)), since in the worst case we pass over the whole number twice, and off one
space on the right, and one space on the left.

1.3 Predecessor
Input: x ∈ {0, 1}∗

Output:

{
x− 1, if x > 0

x, otherwise
This algorithm can be seen as starting from the right, converting all the 0s to 1s, until we find a 1, at which point we

convert it to 0, and finish (unless x = 0).
To do this, we will start by finding the rightmost edge of the input, but if the input is 0, we will stop.

q0start

q1 q2

qF

0, 0, R

␣, ␣, R

1, 1, R

0, 0, R

1, 1, R

Next is like above, but swapping 0s and ones

2



q0start

q1 q2

qF

0, 0, R

␣, ␣, R

1, 1, R

0, 0, R

1, 1, R
␣, ␣, L

0, 1, L

1, 0, R␣, 0, R

1.4 Formal definition
A Turing Machine T can be described as follows:

T = (Σ,Γ, ␣, Q, q0, F, δ)

Where

• Σ is the alphabet of the input, a finite non empty set.

• Γ is the working alphabet, Σ ⊆ Γ (and is naturally also finite)

• ␣ is the empty letter, and ␣ ∈ Γ \ Σ

• Q is the set of states (finite)

• q0 ∈ Q the initial state

• F ⊆ Q is the set of final states (Sometimes F = {qF }, and sometimes F = {qacc, qrej})

• δ the transition function, where δ : Γ× (Q \ F ) → Q× Γ× {R,L}

1.5 Addition
Input: x#y where x, y ∈ {0, 1}∗ (note, # ∈ Σ)
Output: x+ y#
Implementation:

1. We will go right until we are one cell to the right of #.

2. We will subtract 1 from y, and if y = 0 we will go over all the letters of y from right to left and convert them to
spaces, and stop when we arrive at #.

3. We will run left until 1 after the #

4. We will add 1 to x

5. We will return to the first step

This is horrifically inefficient, and runs in exponential time. Effectively, the runtime is the value of y.

1.6 Concatenation
Input: x ∈ {a, b}∗
Output: x#x
We could take the first letter, replace it with a space, and reinsert it after the #, but this will just leave us with the word
moved to after the #. We shall add the symbols:

Γ = Σ ∪ Σ× {_,̂ } ∪ {␣} ∪ . . .

Technically, given a ∈ Σ, then it would be akin to (a,_) ∈ Γ, but we will simply write a.

3



1. Go right until the ␣, and replace it with #

2. We will go left until ␣ or until a diacritic letter, and then go one step right

3.

q0start q1 q2

qa

qb

qc qF

a, a, R

b, b, R

␣, #, L

a, a, L

b, b, L

␣, #, L
a, a , L

b, b , L

a, a, R

b, b, R

#,#, L

a, a, L

#,#, L

4.

qa q1

a, a, R

b, b, R

#, #, R
␣, a, L

1.7 Insertion
Input: y#x
Output: y##x
This is doable, and is left as an exercise to the reader (got to right until end, copy each letter right one until #, repeat
and stop).

1.8 Multiplication
Input: x#y
Output: x · y#
As in, multiplication of the binary numbers x and y. In short, we need to add x to itself y times.

To do this, we will copy the x to the left, so x#y → xc#x#y, and then create xc#xc#x#y. We then perform addition
on the section xc#x, resulting in xc#(xc + x)#y → xc#2x#(y − 1), and then return to the step where we copied over
xc.

4


	Turing machines (TMs)
	Runs on TMs
	Successor
	Predecessor
	Formal definition
	Addition
	Concatenation
	Insertion
	Multiplication


