Lecture 5

Gidon Rosalki

2025-04-27

1 Calling TMs as procedures / functions

(We have seen: Numbers, adding symbols, movement, adding letters above through ordered pairs)

1.1 Example - counting computation steps

Task: Given a TM M, we want to create the TM M', such that if M stops on input w, then M' will also stop on w, and M'(w) = M(w)#t, where t is the binary representation of the number of steps that M needed to compute w. The concept is that we will preserve on the tape what M does, and then a #, followed by a counter. We are making the assumption that # is not part of the original alphabet. So, we then do a computation step of M, and then increment the counter, and then go back and compute the next step of M, increment the counter, and so on. Let there be S:

- 1. Runs right, until finding the #
- 2. If there is no number to the right of #, then S writes 0 (perhaps we have not yet started the counter)
- 3. Add 1 to the counter
- 4. We will finish in state s_F

 \mathbf{M}

- 1. Add # to the right of the input, and return to its beginning
- 2. Transition to the start state of M
- 3. Simulate a step of calculation of M
- 4. "Call" to S to increment the counter
- 5. Return to the original position, and state
- 6. Return to 3

So, to create M', considering M, in state q, with the transition a, b, R, then in M', this will be from q, following the transition $\alpha, \hat{\alpha}, R$ to the state q, s_0 . We are adding the state (q, s) for every state q of M and s of S. Additionally, considering a transition in S of s to s' following α, β, D , then in M' we will have from (q, s) to (q, s'), following α, β, D , until we eventually reach the state (q, s_F) . From here we need to add the following transitions: A loop for every non signed α , the transition back to $(q, s_F) \alpha, \alpha, L$. For when we do find a letter with a symbol, then we follow the transition \overline{a}, b, R to q' in the original TM M.

Let us assume that q is the final state of M. So for M', it is no longer a final state, and it still has the transition which adds a line above the letter (except we will skip the adding of the line, since it is unnecessary from the final state), and continues on to (q, s_0) . We will then finish at (q, s_F) .

1.2 TM as input to a TM

In order to give a TM T the input TM M, we need to convert M into a string.

Definition 1.1. < M > the string representation of the TM M

We will explain the TM M as the string over $\{0, 1, \#, |\}$. W.l.o.g. $\Sigma \subseteq \Gamma \subseteq \mathbb{N}$. Additionally, w.l.o.g. $Q \subseteq \mathbb{N}$. Also w.l.o.g $\Gamma \cap Q = \emptyset$ (this last one is not necessarily required). So

$$\Sigma = \{\alpha_1, \dots, \alpha_k\} \implies \langle \Sigma \rangle = (\alpha_1)_b \# (\alpha_2)_b \# \dots (\alpha_k)_b \#$$

$$\Gamma = \{\alpha_1, \dots, \alpha_n\} \implies \langle \Gamma \rangle = \dots$$

$$\Box = \alpha_7 \implies \langle \Box \rangle = (\alpha_7)_b$$

$$Q = \{q_1, \dots, q_m\} \implies \langle Q \rangle = (q_1)_b \# \dots$$

$$q_0, F \implies \dots$$

We will soon discuss δ . So we may see that $\langle M \rangle = \langle \Sigma \rangle \langle \Gamma \rangle | \langle \Box \rangle | \dots | \langle \delta \rangle$.

δ: If δ(q, α) = (q', β, D) then we will say that (q, α) to (q', β, D) is the transition. We will represent δ through representations of its transitions:

$$##(q)_{b} # (\alpha)_{b} # (q')_{b} # (\beta)_{b} # (D)_{E}$$

We can additionally convert the input w to a string $\langle w \rangle = (w_1)_b \# (w_2)_b \dots$, and so $\langle M, w \rangle = \langle M \rangle \langle w \rangle$.

Definition 1.2 (Universal TM). A TM U is called **universal** if given $\langle M, w \rangle$:

- 1. If M does not stop running on w, then U will also not stop
- 2. If M stops on w, then U will stop, and

$$U\left(\langle M, w \rangle\right) = \langle M, w \rangle$$

3. If the final states of M are $q_{acc} = 1$, $q_{rej} = 0$, then U will stop in the same state as M.

Theorem 1. There exists a universal Turing machine U

Proof. This proof is incomplete. The machine U will run in the following manner:

- 1. Input $\langle M, w \rangle$
- 2. U will write on the tape $\langle M \rangle (q_0)_b \# \langle w \rangle$ (Note that the elements after $\langle M \rangle$ are C_0)
- 3. $\langle M \rangle \langle C_i \rangle \rightarrow \langle M \rangle \langle C_{i+1} \rangle$
- 4. When we arrive to the final configuration:
 - (a) We will delete $\langle M \rangle$
 - (b) We will delete $(q)_b$
 - (c) If $q \in \{0, 1\}$, then finish in q, otherwise we will finish in q_F

1.3 Does M stop on w?

Hey look! It's the halting problem!

Let us define our language $HALT = HALT_{TM} = \{ \langle M, w \rangle : M \text{ stops when running on } w \}.$

Definition 1.3 (Decision TM). A TM M is called a decision machine if the set of final states is $F = \{q_{acc}, q_{rej}\}$.

Definition 1.4 (Language of a DTM). The language of a decision TM

 $L\left(M\right) = \left\{w: M \text{ stops in state } q_{acc} \text{ when run on } w\right\}$

In this case we will say that M accepts w. If M stops on w in state q_{rej} we will say that M rejects w.

Definition 1.5 (Recognition). If L(M) = L, then we will say that M recognises L.

Theorem 2. There exists a TM that recognises HALT.

Definition 1.6.

 $RE = \{L : There \ exists \ a \ TM \ M \ that \ recognises \ L\}$

So we may now instead write the above theorem as

Theorem 3.

$$HALT \in RE$$

Proof. UTM. We will convert every final state of the UTM to an accepting state. Therefore, if the simulation ends, then the language is accepted in RE, and otherwise it is not. \Box

Definition 1.7. The TM M decides the language L if L(M) = L, and also stops on every input

Theorem 4 (Halting problem). There is no TM that decides HALT:

Definition 1.8.

$$R = \{L : There \ exists \ a \ TM \ that \ decides \ L\}$$

And so:

Theorem 5 (Halting problem).

 $HALT \notin R$

. We will assume w.l.o.g that there exists a TM D that decides *HALT*. We will use it to build the TM E, which given an input $\langle M \rangle$, runs D on it:

- 1. E will copy the input: $M \to \langle M, \langle M \rangle \rangle$
- 2. E will run D as a procedure
- 3. If D returns "yes", then E will enter an infinite loop, and if D returns "no", then E will accept (in short, stops).

We will run the TM E on the input $\langle E \rangle$. Will E stop on the input $\langle E \rangle$? If E stops, then D has returned that E stops, and then E will enter an infinite loop, and will not stop, which is a contradiction. On the other hand, if E does not stop, then D will return that E has not stopped, but then E will stop, which is once again, a contradiction. This is a contradiction, and therefore the assumption that D exists is incorrect.

2 Reductions

Let us define

 $HALT_{\varepsilon} = \{ \langle M \rangle : M \text{ stops on every input } \varepsilon \}$

Theorem 6.

 $HALT_{\varepsilon} \notin R$

Proof. We may construct the TM red (contraction of reduction) which operates as follows on the input $\langle M, w \rangle$: Red will create a description of a TM M', where given an empty input, it prints w, and then runs like M. This is to say $\langle M, w \rangle \rightarrow \langle M' \rangle$.

Let us assume the contradiction that D is the TM that decides $HALT_{\varepsilon}$. Given $\langle M, w \rangle$, we will give them as input to Red, which will then return $\langle M' \rangle$. This will be given as input to D (as described in halting problem), and returns yes or no. Therefore, the first 3 steps decides HALT, which is a contradiction, since there is no machine that decides HALT. \Box