
Lecture 6
Gidon Rosalki

2025-05-04

1 Reminder of languages
We have RE, all the languages recognisable by Turing machines, R, the set of decidable languages by TMs, and REG, all
the regular languages (recognisable by a DFA). These hold that REG ⊂ R ⊂ RE. Note that HALT ∈ RE. Let us define

CO −RE =
{
L : L ∈ RE

}(
L = Σ∗ \ L← L ⊆ Σ∗)
= {L : There exists a TM M that rejects the input x⇔ x /∈ L}

Now, is it true that R ⊆ CO−RE? IT is true that R ⊂ CO−RE, but is there anything else? Anything that is within
RE, but not R, or anything that is in CO-RE, but not in RE?

Theorem 1.
RE ∩ CO −RE = R

Proof. It is trivial that
R ⊆ RE ∩ CO −RE

from the previous lecture, so now we simply need to show the other direction:

RE ∩ CO −RE ⊆ R

Since if L ∈ RE ∩ CO − RE, then there is a TM ML and ML the recognise L and L accordingly. We may thus build
the TM MD (D for decide), that decides L by given an input x, MD will run ML and ML on x a total of i steps for
every i ∈ N. If ML will accept or reject, then MD will accordingly accept / reject, and if ML will accept or reject, then
MD will reject / accept accordingly. It is certain that at elast one of these will occur, and thus MD will give the correct
response.

Is there a language L ∈ CO − RE \ RE? Yes: HALT . HALT ∈ CO − RE \ RE, since otherwise it would be in R,
and thus both it and HALT would be decidable, which is a contradiction to the fact that they are undecidable.

2 Reductions
Reductions are translating problems into other problems, and we may use them to say that a given problem is no more
difficult than a different problem, given a certain function that translates between them. Consider L ⊆ Σ∗, L′ ⊆ Γ∗,
languages, and the TM that can recognise L, M . Thus, with the reduction Red, we can give Red a word w ∈ Σ∗, and
thus recognise whether or not it is in fact in L′ through using M upon it. Formally:

Definition 2.1 (Reduction). L ⊆ Σ∗, L′ ⊆ Γ∗. A reduction machine from L′ to L is the TM Red that stops on every
input x ∈ Γ∗ and returns a word in Σ∗ such that

Red (x) ∈ L⇔ x ∈ L′

If there exists such a TM, then we will say that there exists a reduction from L′ to L, and we will write

L′ ≤m L

and the function x→ Red (x) will be called the reduction function from L′ to L.

Theorem 2 (Reduction theorem). If L′ ≤m L, then all the following are true:

1. L ∈ R =⇒ L′ ∈ R

1



2. L ∈ RE =⇒ L′ ∈ RE

3. L ∈ CO −RE =⇒ L′ ∈ CO −RE

Proof . Homework (the concept is that if M ”solves” L, then M ◦Red solves L′)

Theorem 3 (HALT ≤ ATM ). Let
ATM = {〈M,w〉 : M accepts w}

Proof . The reduction will return, given an input 〈M,w〉 a coding 〈M ′, w〉, where M ′ is a TM that runs like M , apart from
the fact that M ′ will also accept, even when M rejects (i.e., M ′ will accept whenever M stops, thus describing HALT ).
Correctness: The described reduction may be described by a TM that always stops. 〈M,w〉 ∈ HALT if and only if M
stops on w if and only if M ′ accepts w if and only if 〈M ′, w〉 ∈ ATM

Theorem 4.
ATM ≤m HALT

Proof . Given 〈M,w〉, the reduction will return 〈M ′, w〉, where M ′ is a TM that runs like M , however when M rejects,
then M ′ enters an infinite loop.
Correctness: Computation - trivial, 〈M,w〉 ∈ ATM if and only if M accepts w if and only if M ′ stops (and accepts,
not that important) on w if and only if 〈M ′, w〉 ∈ HALT

Theorem 5. For every language L ∈ RE, it holds that L ≤m ATM

Proof . Continued below

Definition 2.2. If C is a set of languages, and L is a language such that L′ ≤m L, for every L′ ∈ C, then we will say
that L is C-hard. If, additionally L ∈ C, we will say that L is C-complete.

Theorem 6. ATM is RE-complete

Proof . ATM ∈ RE. It remains to show if L ∈ RE, then L ≤m ATM . For such an L, there is a TM ML, that recognises
it. Given the input x for L, the reduction will return 〈ML, x〉.
Correctness: Trivial, left as an exercise to the reader.

Theorem 7. HALT is CO −RE complete

Proof . Let there be L ∈ CO −RE. Therefore L ∈ RE. Therefore

L ≤m ATM ≤m HALT =⇒ L ≤m HALT =⇒ L ≤m HALT

What words are in HALT?
HALT = {〈M,w〉 : M does not stop on w} ∪ E

Where E is the set of incorrect inputs (also known as nonsense, or figgldygrak).

Theorem 8. Non-Halt is complete in CO −RE

Proof . Firstly, is it true that Non-Halt ∈ CO − RE? Well Non-HAlt = Halt ∪E, where Halt ∈ RE ∧ E ∈ RE. So
therefore Non-Halt ∈ RE. We will finish with a reduction from HALT to Non-Halt. Let us create a function such that for
the words in HALT , for those accepted are mapped to being accepted by Non-Halt, for those that are figgldygrak, they
are also accepted by Non-Halt, and those rejected by HALT , they too are rejected by Non-Halt.

Let us define some more languages. Consider

Y −HALT = {〈M,w〉 , Y : M stops on w}
N −HALT = {〈M,w〉 , N : M does not stop on w}

NY −HALT = Y −HALT ∪N −HALT

Theorem 9. NY-HALT is both RE-hard, and also CO −RE-hard.

Proof RE. We will show a reduction from HALT, since for every other language in RE there is a reduction to HALT, so
this is sufficient. Given 〈M,w〉, the reduction will return 〈M,w〉 , Y . The correctness is trivial, and left as an exercise for
the reader.

2



Proof CO-RE. We will create a reduction from Non-Halt, as follows:

〈M,w〉 → 〈M,w〉 , N

We have thus created a language that is harder than all the languages in RE, and CO-RE. To fully demonstrate this,
we must show that NY − HALT /∈ RE. If it were, then from the reduction theorem Non − Halt ∈ RE, but we have
already shown Non−Halt ∈ CO −RE, and thus Non−Halt ∈ RE ∩ CO −RE = R, but this cannot be.

3 Things which we have not the time to study further
Consider a shape given by a list of corner points. Is it possible to tile a plane, using copies of this shape? Well, maybe,
this problem is not decidable.

3.1 The theory of Turing and Church
Every computation machine (in our universe), can be simulated by a Turing Machine.

4 Mathematical logic
In 250BC Archimedes established that one can prove geometrical problems by assuming mathematical axioms. In 1880
Frege created a system of proofs, where everything is either an axiom, or everything is derived by rules. So, in our
language, we may state that for all the proofs (that Frege could conceive) proof ∈ R. In 1900 Hilbert asked if it is possible
to compute mathematics (compute as in TM, not 4 + 5), i.e. if every mathematical proof can be proven using Frege’s
framework. He kept asking, until he asked if you may decide a mathematical theorem by a computation, or in other words,
if the language of mathematical theorems is in R? The answer is no (sadly). We may also ask if every mathematical
theorem there exists a proof, or disproof. If so, then CORRECT ∈ R, (the collection of correct mathematical theorems),
which we just stated was not the case. Then came Godel (with answers we don’t like), and showed that given

DECIDABLE = {Theorems that may be proved or disproved}

the following theorem

Theorem 10.
DECIDABLE ∈ RE

Proof . Let us assume that T is a TM that decides DECIDABLE. We will show that this shows that HALT ∈ R. We
will build a TM S, that works as follows: Given 〈M,w〉 S will answer the theorem ”〈M〉 does not stop on 〈w〉”. If T
answered ”No”, then S will answer ”No”. If T answered ”yes”, then S will run on the proof.
Since there exists a mathematical proof of the type ”〈M〉 does not stop on 〈w〉”, which is correct, but has no proof.

3


	Reminder of languages
	Reductions
	Things which we have not the time to study further
	The theory of Turing and Church

	Mathematical logic

