
Lecture 8
Gidon Rosalki

June 17, 2025

1 Reminders
Hear me and rejoice mortal, for here are some reminders of definitions of complexity sets:

Definition 1.1 (TIME).

TIME (f (n)) = {L ⊆ Σ∗ : There exists a deterministic TM that runs in O (f (n)) and decides the language L}

Definition 1.2 (NTIME).

NTIME (f (n)) = {L ⊆ Σ∗ : There exists a non deterministic TM that runs in O (f (n)) and decides the language L}

For a non deterministic TM, for some word w ∈ Σ∗, there are different runs with different outcomes and runtimes. We
will say that w ∈ L (M) if and only if there exists a run that ends in qacc. The runtime is the worst case between all the
possible runs.

Definition 1.3 (SPACE).

SPACE (f (n)) = {L ⊆ Σ∗ : There exists a deterministic TM that decides L while using the space O (f (n))}

Definition 1.4 (NSPACE).

NSPACE (f (n)) = {L ⊆ Σ∗ : There exists a non deterministic TM that decides L while using the space O (f (n))}

w ∈ L is defined similarly to NTIME, and space complexity according to the worst case of all the runs.

Definition 1.5 (P).

P =

∞⋃
k=1

TIME
(
nk

)
All the languages that can be decided in deterministic polynomial time.

Definition 1.6 (NP).

NP =

∞⋃
k=1

NTIME
(
nk

)
All the languages that can be decided in nondeterministic polynomial time.

”If you want to make a million dollars, there are easier ways than to prove equivalence of P and NP”-Oded Schwartz,
May 2025.

Definition 1.7 (EXP).

EXP =

∞⋃
k=1

TIME

(
2
O
(
nk

))
It is true that

P ⊆ NP ⊆ EXP ⊆ R

The first containment is because the DTM is a specific case of an NDTM. The second containment is left as an exercise
for the reader, since it is homework, and the third is because there is a deciding machine (happens to be also of exponential
runtime).
Reminder: We will say that there is a polynomial reduction from A to B, and write A ≤p B, if there exists a procedure
f , and TM Mf , such that Mf computes f in polynomial time, and also

w ∈ A ⇔ f (w) ∈ B

(Polynomial time by |w|).

Theorem 1 (Reduction theorem). The reduction theorem for polynomial reductions:

• A ≤p B ∧B ∈ P =⇒ A ∈ P

1

2 Extension of reduction
Theorem 2.

A ≤p B ∧B ≤p C =⇒ A ≤p C

Proof . Since A ≤p B, there exists a function f , and there exists a polynomial DTM Mf which computes f , and

w ∈ A ⇔ f (w) ∈ B

Similarly, since B ≤p C, there exists a function g, and there exists a polynomial DTM Mg, which computes g, and

w ∈ B ⇔ g (w) ∈ C

• Construction: We will construct the machine Mh, which computes h, a reduction from A to C, such that Mh is a
polynomial DTM.
For an input x ∈ A, Mh will compute y = f (x), like Mf , and then compute z = g (y), like Mg, and then return z.
We need to show correctness, and polynomial runtime.

• Correctness:

x ∈ A ⇔ y = f (x) ∈ B

⇔ z = g (y) ∈ C

Where the first follows from the correctness of Mf , and the second from the correctness of Mg.

• Runtime: The first step is running Mf , and it is known that Mf is a polynomial DMT, which is to say it runs in
O
(
|x|k1

)
, for some constant k1. The second step is running the machine Mg, which is known to be a polynomial

DTM, and therefore runs in O
(
|y|k2

)
, for some constant k2. This is not good enough, since we need the runtime to

be polynomial in the length of the input x, but we are also dependent on y, an internal variable. We need to find
some bound for y, associated with |x|. We will note that the machine Mf can only create an output y of length that
is at most the number of steps in which it runs. Therefore |y| = O

(
|x|k1

)
, which is to say that the runtime of the

second step is O
(
|x|k1·k2

)
. Therefore, the runtime of both steps is O

(
|x|k1·k2

)
, where k1 and k2 are both constants.

Let us recall the definitions of C-hard, and C-complete. L ∈ NP − hard if and only if for every L′ ∈ NP , L′ ≤p L.
L ∈ NP − complete if and only if L ∈ NP and L ∈ NP − hard.

Now, P = NP? Worth a million dollars, and 100% in the course (which is frankly the important thing here), but
there are better ways to earn a million dollars, and easier ways to get 100% in this course.
If L ∈ NPC (NP-complete), and also L ∈ P , then P = NP , and if L ∈ NPC, and also L /∈ P then P 6= NP .
Explanation: If L ∈ NPC, then L ∈ NP − hard, which is to say for every L′ ∈ NP , then L′ ≤p L. If in addition L ∈ P ,
then according to the reduction theorem, L′ ∈ P , which is to say that NP ⊆ P , and therefore P = NP .

3 NPC languages
3.1 3SAT
A first example of an NPC language:

3SAT = {ϕ : ϕ is a 3CNF expression, and also ϕ satisfies}

Reminder: A boolean expression will be called CNF if it is of the following structure: Constructed from statements,
and within each statement is boolean variables separated by logical ors. Between each statement, are logical ands. An
expression will be called 3CNF if in each statement there are exactly 3 literals, which is to say 3 variables. An expression
ϕ will be called satisfying if and only if there is a placement that satisfies the variables, which is to say, a placement of
the values True or false on teh variables such that the overall result of ϕ is true.

Theorem 3.
3SAT ∈ NPC

Proof . We need to show

2

1. 3SAT ∈ NP :
We will show that 3SAT ∈ NP , which is to say, to show that there exists a polynomial DTM that decides 3SAT.
The machine M :

• Will produce an expression of the structure 3CNF (easy)
• Will guess a placement, and verify that the placement satisfies ϕ

The runtime is polynomial, for obvious reasons. The correctness follows from if the placement satisfies, then there
is a run that accepts, and if not, then there is not.

2. 3SAT ∈ NPH - next week.

3.2 CLIQUE
Second example of an NCP language:

CLIQUE = {(G, k) : G is an undirected graph, k is a natural number, and there exists in G a clique of size k}

This is to say, that there exists a subset of edges of size k, such that for every 2 nodes in the set, they are connected by
an edge.

Theorem 4. CLIQUE is NPC

Proof . • We need to show that CLIQUE ∈ NP .
We will show a polynomial NTM that decides CLIQUE. The machine will take an input (G, k), and will non
deterministically guess a subset S of nodes, and then will check deterministically the following:

1. Count how many nodes are in S, and if it is different from k, stop on qrej

2. For every pair of nodes in S, check if there is an edge between them. If we find a pair in S without an edge
between them, then stop on qrej. If there is an edge between every pair of nodes in S, then stop on qacc.

Correctness: If (G, k) ∈ CLIQUE, then there exists a subset S of edges in G, such that k = |S|, and also between
every pair of edges in S, there is an edge. Therefore, if the machine M will guess S, then it will stop on qacc. If
(G, k) /∈ CLIQUE, then for every set S, it is either not of size k, or there is a pair of nodes that are not connected
by an edge, and therefore in all cases, M will stop on qrej.
Runtime: A guess S is bound by the length of the input. Counting the size of S takes place in O (n). Checking the
edges: O

(
k2

)
pairs, and for every pair, O (n), so overall O

(
n3

)
, which is to say a polynomial runtime.

• We need to show that CLIQUE is NP hard.
This is to say that ∀L′ ∈ NP , there is a reduction L′ ≤p CLIQUE. We will show ”only” a reduction from
3SAT ≤p CLIQUE. Since 3SAT ∈ NPH, it is true that ∀L′ ∈ NP, L′ ≤p 3SAT . We have shown that polynomial
reductions are closed to compounding, and therefore we can conclude that ∀L′ ∈ NP, L′ ≤p CLIQUE, which is to
say CLIQUE ∈ NPH. We need to show that 3SAT ≤p CLIQUE: This is to say that there exists a function f ,
and a TM Mf , such that Mf computes f , in polynomial time, and also f is a reduction function, which is to say

ϕ ∈ 3SAT ⇔ f (ϕ) ∈ CLIQUE

where f (ϕ) = (G, k). So
ϕ is 3CNF satisfiable ⇔ G has a CLIQUE of size k

Construction: Given a statement ϕ, the machine Mf will run as follows:

1. Check if ϕ is of the structure 3CNF (easy). If not, return (G, k) /∈ CLIQUE, for example, G has 3 nodes,
k = 100.

2. W.l.o.g. ϕ is of the structure 3CNF . Mf will run as follows: For all statements in ϕ, we will define 7 nodes,
one for every placement that satisfies the statement. Between every pair of nodes, Mf will make a connection,
aside from when they are related to a shared variable, and do not agree on its placement. k will be the number
of statements in ϕ.

Example:
ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4)

3

000start 001 011 100 101 110 111

000 001 010 100 101 110 111

Filling out the rest of the edges is left as an exercise for the reader. We create a graph, 7 wide, and m, the number
of statements in ϕ, deep.
Runtime: Creating edges: This is polynomial in ϕ, since there are 7m edges, and m < |ϕ|. Connecting the edges:
This needs to pass over every pair of edges O

(
(7m)

2
)

, which is to say O
(
m2

)
, and for every pair we need to check:

If we do not have shared variables, we make an edge. If we do have shared variables, and we give the shared variables
equivalent values, we will connect an edge, and otherwise will not. This takes O (|ϕ|) for every pair, and we thus
have an overall runtime of O

(
|ϕ|3

)
.

Correctness: We need to show that if ϕ ∈ 3SAT , then (G, k) ∈ CLIQUE. This is to say if ϕ is a satisfying 3SAT
statement, then G contains a CLIQUE of size k.. We will look at a placement A that satisfies ϕ. For every statement,
we will choose a node (from the 7-tuple), that is suitable to the placement that agrees with A. We will note that A
is a satisfying placement, and therefore is relevant to precisely 1 node of all the 7-tuple. We shall theorise that the
set S of nodes that we chose is a clique in G, of size k. It is of size k since in S there is exactly one node for every
layer / statement. It is a clique since every pair of nodes in S are connected by an edge. We will look at a pair of
nodes in S. If they are not matched to a shared variable, according to the construction, they must have an edge
between them. If they do have a shared variable, since the placement for every statement is related to the general
placement A, then they satisfy the placement for shared variables, which is to say, according to the construction,
there is an edge between the pair of nodes.
Let us consider the other direction: If (G, k) ∈ CLIQUE, then ϕ ∈ 3SAT . We will look at the subset S of nodes,
which is a clique in G of size k. We will note that S necessarily contains a single node from each layer. It cannot
be more than 1 since in each layer there are no edges, and S is a clique. It cannot be less than 1, since the size
of the clique is the number of layers. We will define a placement A through S. For every statement, the node in
S from the relevant layer defines a placement for the variables of the statement. We will note that a pair of nodes
that handle a shared variable agree on its placement, since S is a clique, which is to say they are connected by an
edge, and therefore we have received a a placement for all the variables. Additionally, every node is relevant to a
placement according to the statement that satisfies it, and since there is in S a node in every layer, the placement
A satisfies all the statements, which is to say, it satisfies ϕ, which is to say that ϕ ∈ 3SAT .

4 Alternative definition of NP
A DTM M is a polynomial verifier for the language L. If M accepts a pair of inputs (w, c), and runs in polynomial
over |w|, and it is true that

• For all w ∈ L, there exists c such that M (w, c) = qacc.

• Fir all w /∈ L, and for all c M (w, c) = qrej

We will define NP ′ to be the set of all languages L which have a polynomial verifier.

Theorem 5 (NP = NP’). Example: We want to show that there is a polynomial verifier for the language CLIQUE. w
will be a pair (G, k), which is a candidate for being in CLIQUE. c will be a witness to the presence, and in this case
is meant to represent the clique in G, of size k. The deterministic machine M will check if c is a set of k nodes, and if
between every pair of nodes there is an edge. If so, M will return qacc, and otherwise, M returns qrej.
Correctness: If (G, k) ∈ CLIQUE, then the placement of c to be a clique of size k will enable M to return qacc. If
(G, k) /∈ CLIQUE, then for every placement of c, running M will result in qrej.
Runtime: Easy to show that it is polynomial in |(G, k)|.

4

	Reminders
	Extension of reduction
	NPC languages
	3SAT
	CLIQUE

	Alternative definition of NP

