
Tutorial 2
Gidon Rosalki

2025-04-02

Notice: If you find any mistakes, please open an issue at https://github.com/robomarvin1501/notes_computability_complexity

1 Non-deterministic Finite Automaton (NFA)
Definition 1.1 (NFA). An NFA A is defined as

A = (Q,Σ, δ,Q0, F )

where

• Σ is the alphabet

• Q is a set of the states

• F ⊆ Q

• Q0 ⊆ Q the starting states

• δ : Q× Σ → 2Q

Definition 1.2 (Run). A run of A on w = w1 . . . wn is a sequence of states r0, . . . , rn ∈ Q, such that

• r0 ∈ Q

• ∀0 ≤ i < n ri+1 ∈ δ (ri, wi+1)

Definition 1.3 (Accepting run). A run is called accepting if rn ∈ F

Definition 1.4. A accepts w if there exists at least 1 accepting run.

1.1 A small NFA can replace a DFA
For every k ∈ N we will define Lk to be the language over Σ = {a, b} that contains the words for whom the kth letter
from the end is a.

1. Design a DFA that decides L2

2. Design a NFA that decides L2

3. For a general k, show that there exists an NFA with k + 1 states that decides Lk

4. For a general k, show that any DFA that decides Lk has at least 2k states

1. The following DFA decides L2:

qbbstart qba

qab qaa

b

a

a

b

a
b

a

b

1

https://github.com/robomarvin1501/notes_computability_complexity


2. The following NFA decides L2:

q0start q1 q2

a, b

a a, b

3. The following NFA with k + 1 states decides Lk:

q0start q1 q2 . . . qk−1 qk

a, b

a a, b a, b a, b a, b

We want to find for all Q′ ⊆ Q which words w can finish running in Q′. For the word w we will write i1, . . . , il
the locations of a from the end (only in the last k letters), and we will claim that these words whose a positions
as described above can reach {q0, qi1 , . . . , qil}. For the inductive step we will decompose the word w as w′α, where
α ∈ {a, b}. By the induction hypothesis, we determine the possible sets of states that u can reach. Then for each
α ∈ {a, b}, we verify the states that δ may lead w to are exactly those in the inductive claim.

4. We will assume the contradiction that A with less than 2k states can decide L (A) = Lk. We will note that there are
2k words of length k. Therefore, from the pigeonhole principle, there exists u 6= v that finish their runs at the same
state. For every word w ∈ Σ∗, then u · w ∧ v · w finish in the same state, and therefore are either both accepted,
or both rejected. Let us denote as i the first index where the two words differ, and without loss of generality define
ui = a, and vi = b. If we create the words u′ = u · ai−1, v′ = v · ai−1, we know that the kth letter from the end of u′

is a, and thus is accepted by A, but the kth letter from the end of v′ is b, and is thus rejected, in contradiction, and
thus A has at least 2k states.

2 Closure properties of NREG
Definition 2.1 (NREG).

NREG = {L ⊆ Σ∗ : ∃NFA that decides LL}

2.1 Union
Theorem 1. NREG is closed to union:

L1, L2 ∈ NREG =⇒ L1 ∪ L2 ∈ NREG

Proof . L1, L2 ∈ NREG =⇒ that there be

A = (Q,Σ, δ,Q0, F )

B = (P,Σ, η, P0, G)

Such that L (A) = L1, L (B) = L2. We will define

C = (Q ∪ P,Σ, α,Q0 ∪ P0, F ∪G)

α (q, α) =

{
δ (q, α) , if q ∈ Q

η (q, α) , if q ∈ P

Let there be w = w1 . . . wn, and r0, . . . , rn be the run of C on w. We want to show that all of the run is contained within
Q or within P . For r0 ∈ Q0, we may see by induction that

ri+1 ∈ α (ri, wi+1) = δ (ri, wi+1) ∈ Q

We may similarly show for r0 ∈ P0.

We will prove that L (C) = L1 ∪ L2 through two sided containment:

2



1. Let there be w ∈ L1 ∪ L2. Without loss of generality, w ∈ L1. There exists an accepted run of A on w which we
will call r. Therefore, r is an accepted run on C.

2. Let there be w ∈ L (C). There exists a run of C on w r = r0 . . . rn. Without loss of generality r0 ∈ Q0. Therefore,
the run r is contained in Q, and thus r ∈ L (A).

Therefore, L (C) = L1 ∪ L2

2.2 Concatenation
Theorem 2.

L1 · L2 = {w1 · w2 : w1 ∈ L1, w2 ∈ L2}

Proof . Let there be

A = (Q,Σ, δ,Q0, F )

B = (P,Σ, η, P0, G)

NFAs that recognise L1 and L2 respectively. We want to construct an NFA C such that L (C) = L (A)·L (B). We will need:

• States = Q ∪ P

• Alphabet = Σ

• Transition function = All the transitions of A and all the transitions of B and a transition ε between all accepting
states of A to all the starting states of B

• Start states = Q0

• Finish states = G

For example, let us consider the regular expressions L1 = (ab)
∗
, L2 = (ac)

∗ over Σ = {a, b, c}. They respectively are
the automota:

q0start q1

a

b

and

q0start q1

a

c

So to use the construction described above:

q0start q1 q2 q3
a

b

a

c

ε

3



3 Formalising epsilon transitions
How can we perform the last NFA without ε transitions?

q0start q1 q2

start

q3
a

b

a

c
b

Let us formalise the concept. Given an NFA with ε transitions, we denote the non ε transitions by η : Q × Σ → 2Q.
Suppose that there is a transition from q to q′ labelled a, and a transition from q′ to q′′ labelled ε. We will add in δ to
be our target transition function. Therefore δ must contain a transition from q to q′′ through the label a. This is almost
sufficient, but what if there are more states reachable from q′ through ε? We will want a transitions from q to those states
as well. We will define the additional

E (q) = {q′ ∈ Q : q′ is reachable from q using only ε transitions}

We can thus define δ as follows:
δ (q, α) =

⋃
q′∈η(q,α)

E (q′)

Now every transition from q to q′ takes into account all ε transitions reachable from q′. We must now consider the initial
states: Suppose that P0 is the set of initial states on the graph before we take the ε transitions into account. We will
define our set of initial states as follows:

Q0 =
⋃

q∈P0

E (q)

So every state reachable from an initial state via an ε transition is considered an initial state.

4 Delta star for NFAs
Definition 4.1 (δ∗).

δ∗ : 2Q × Σ∗ → 2Q

δ∗ (S,w) = {q ∈ Q : there is a run such that r0 ∈ S, rn = q ∧ ∀0 ≤ i < n ri+1 ∈ δ (ri, wi+1)}

or recursively

δ∗ (S,w) =


S, if w = ε⋃
q∈δ∗(S,w′)

δ (q, α) , if w = w′α

Theorem 3. Both above representations are equivalent

Proof . We will show that the first case satisfies both the base case, and the recursive case. Since they agree on both,
then they have the same definition. In this proof, δ∗ will refer to the first definition, and S ⊆ Q.
Base case: Let w = ε. A run on ε starts at some state r0 ∈ S, and immediately stops. Therefore, the reachable states are
the states in S, and we have shown that δ∗ (S, ε) = S
Recursive case: Let w = w′α. We want to prove that

δ∗ (S,w′α) =
⋃

q∈δ∗(S,w′)

δ (q, α)

We shall do this through two sided containment:
1. Let rn ∈ δ∗ (S,w′α). There is a run r0, . . . , rn on w′α, that starts in S, where rn ∈ δ (rn−1, α). Since r0, . . . , rn−1 is

a run on w′ starting in S, so rn−1 ∈ δ∗ (S,w′), therefore

rn ∈ δ (rn−1, α) ⊆
⋃

q∈δ∗(S,w′)

δ (q, α)

2. Let rn ∈
⋃

q∈δ∗(S,w′)

δ (q, α). Then there is some rn−1 ∈ δ∗ (S,w′) for which rn ∈ δ (rn−1, α). There is a run

r0, . . . , rn−1 from S on w′, and since rn ∈ δ (rn−1, α), we have shown that r0, . . . , rn is a run from S to rn. Therefore,
rn ∈ δ∗ (S,w′ · α)

4


	Non-deterministic Finite Automaton (NFA)
	A small NFA can replace a DFA

	Closure properties of NREG
	Union
	Concatenation

	Formalising epsilon transitions
	Delta star for NFAs

