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1 Verifiers
Reminder: We define the language NP as follows:

NP =

∞⋃
k=0

NTIME
(
nk

)
Definition 1.1 (Polynomial verifier). A verifier for a language L is a deterministic TM V which given (w, c), with c
polynomial in |w|, runs in polynomial time in |w| and

∀w ∈ L, ∃c ∈ Σ∗ : V (w, c) = qacc

∀w /∈ L, ∀c ∈ Σ∗ V (w, c) = qrej

This c is called a witness.

Theorem 1 (Equivalent definition of NP). A language L can be recognized by an NTM in polynomial time if and only
if there is a polynomial verifier for L.

Proof . Proved in lecture 9

Example 1. Let

U-ST-HAMPATH = {〈G, s, t〉 : G is an undirected graph, and there exists a Hamiltonian path from s to t}

Show that U-ST-HAMPATH is NP-Complete:

Solution. We first need to show that U-ST-HAMPATH is in NP: We will show that there exists a polynomial time verifier,
V . Let V take as input w = 〈G, s, t〉, and a witness c = 〈v1, . . . , vn〉, a sequence of n = |V | vertices. V then performs the
following:

1. Check if the first vertex is s, and the last is t

2. Check that all nodes are different (since if this is not the case, then there is a repetition, and this is not a Hamiltonian
path)

3. Validate the existence of an edge between every two adjacent vertices

〈G, s, t〉 ∈ U − ST −HAMPATH if and only if There is a Hamiltonian path in G, from s to t if and only if There
exists c ∈ Σ∗ such that V accepts (w, c).
The witness c is polynomial in the size of the input |〈G, s, t〉|, and each operation can be performed in polynomial time.

We now need to show that U-ST-HAMPATH is NP-Hard. In the previous tutorial, it was shown that 3 − SAT ≤p

D − ST −HAMPATH. As 3-SAT is NP-Hard, then so is D-ST-HAMPATH. We can thus show that U-ST-HAMPATH
is NP-Hard, by performing the reduction D−ST −HAMPATH ≤p U −ST −HAMPATH. Let there be the reduction
f (〈G, s, t〉) = 〈G′, sin, tout〉, where G′ is defined as follows:

• For every vertex v ∈ V , our function will write the new vertices vin, vmid, vout, and connect the nodes with the
following edges: {vin, vmid} , {vmid, vout}.

• For every edge (u, v) = e ∈ E, we will define the new edge uout, vin.
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Correctness: Let us assume that 〈G, s, t〉 ∈ D − ST − HAMPATH. Then, let there be the directed Hamiltonian path
s, u1, u2, . . . , uk, t in G. Therefore, there is the path in G′:

sin, smid, sout, u
1
in, u

1
mid, u

1
out, . . . u

k
in, u

k
mid, u

k
out, tin, tmid, tout

Since the original path contained all the vertices, then so too does the new path in G′, thus

〈G′, s, t〉 ∈ U − ST −HAMPATH

Let there be a Hamiltonian path in G′ from sin to tout. Thus, there is a Hamiltonian path in G′, but we do not know
what this path ”looks like”. We proceed with the following claim. A Hamiltonian path that starts at sin and ends at tout
does not contain a directed traversal of the form (vin, uout). That is to say, we never travel ”backwards” along an edge.
Let us assume that there is such a directed traversal, and let (vin, uout) be the first such one in this path. Since the path
is Hamiltonian, we must visit vmid at some point on the path. If we have already visited it, then we must have visited it
from vout, since we are now located at vin, and it has no other edges, but in that case, in order to reach vout, we must
have arrived from some xin, which is a contradiction to (vin, uout) being the first such pair. Therefore, we must visit
vmid after visiting uout, and therefore we must reach it from vout, at which point we get stuck, since we have already
visited vin. Therefore, we cannot reach tout. We can therefore conclude that all the edges in the path are of the formats
(vin, vmid) , (vmid, vout) , (vout, uin). Thus, the Hamiltonian path is of the form

sin, smid, sout, u
1
in, u

1
mid, u

1
out, . . . u

k
in, u

k
mid, u

k
out, tin, tmid, tout

which can be easily mapped to a Hamiltonian path in G.
Runtime: Clearly polynomial, since |G′| = 3 |G|, and computing it is trivial.

2 3-COLOURING
Given a graph G = (V,E), the k-COLOURING problem is to validate whether or not it is possible to colour all vertices
in k different colours such that no 2 neighbouring vertices have the same colour.

3-COLOURING = {〈G〉 : There’s a valid 3-colouring of G}

One way to check if a graph 〈G〉 is not in 3-COLOURING is by validating the existence of a clique of size 4 in G. This
can be done in polynomial tie, since there are

(|V |
4

)
= O

(
|V |4

)
sets of size 4, and it takes polynomial time to verify if

each is a clique.

Theorem 2 (3-COLOURING is NP-Complete). We will first show that 3C ∈ NP by using a verifier V . Given a graph
〈G〉, and a colouring c, V checks if c is a valid colouring of G, by going over all the edges in E, and verifying that the
vertices at each edge have different colours. This can be done in polynomial time.
We will now prove that 3 − SAT ≤p 3C, thus proving hardness in NP. Let 〈ϕ〉 be a 3-CNF formula, with x1, . . . , xn

variables, and c1, . . . , cm clauses. The reduction creates the following graph:

1. Create 3 vertices, T, F,B, and connect them all together.

2. For each variable xi ∈ ϕ, create 2 vertices, vxi, vxi, add an edge between them, and an edge from each of them to B.

T

F

B vxi

vxi

3. For each clause cj = (l1 ∨ l2 ∨ l3), add triple or gadget graph, connect to relevant literals vertices, and connect the
output to B and to F (forcing it to be T )
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Figure 1:

Notice, if l1, l2, l3 are all false, then the triple or gadget output must be coloured false, but it is also connected to F
, so it is an invalid colouring. On the other hand, if at least one of them is coloured true then there exists a valid
colouring.

Correctness: ϕ ∈ 3SAT =⇒ ϕ is satisfiable. Let A (xi) → {T, F} be a satisfying assignment. If xi is assigned T , we
colour vxi green = T , and vxi red = F . Otherwise, we assign the opposite. This is valid as they are connected to B, and
to each other, 3 different colours so far. Since ϕ is satisfiable, each clause cj is satisfiable, so at least one of the literals
is true, and from the gadget observation, it is 3-colourable.
Let 〈G〉 ∈ 3C. We construct a satisfying assignment through the colour of the vertices vxi. If it is coloured true we assign
true, otherwise false. If by contradiction this is not a satisfying assignment, then there is a clause cj which is not satisfied.
As such, lj1, l

j
2, l

j
3 are all false, and are thus all coloured false in the graph. In this case this means the clause triple or

gadget is not 3 colourable, thus the entire graph is not 3 colourable in contradiction. So the assignment must be a satisfying
assignment.
Runtime: For each variable we construct 2 nodes, and connect 3 edges, this is polynomial in n. For each clause we create
an or gadget which is a fixed size of nodes and edges. There are m gadgets, so this too is polynomial in the input size.
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