
Lecture 12 - Speeding up Single Threaded using OOOE
Gidon Rosalki

2025-06-22

This content will not appear in the exam this year!

1 Speeding up Single Threading
Our goal is to minimise the CPU time:

CPU time = clock cycle time · CPI · IC

We can minimise the clock cycle time by adding more pipe stages, minimise the CPI by using pipeline, super scalar, and
minimise the IC with loop unrolling, or modifying the architecture (e.g. adding new instructions).

The CPI in a pipelined CPU, without hazards is simply 1, but with hazards is greater than 1. So what more can we
do?

Well, as discussed last week, we can do n-way superscalar, where our CPU runs n instructions together, if they are
independent of each other. We can statically (in the compiler) schedule instructions to reduce dependencies, and this can
also be done dynamically by the CPU (e.g. OOOE later).

A few years ago, back in 2019 2020 we had CPUs that could fetch up to 5 instructions simultaneously, and execute up
to 10 instructions simultaneously. However, programs are serial, and many instructions depend on each other. Therefore,
how can so many instructions be executed simultaneously? Additionally, how can more instructions be executed than
fetched?

Let us consider the following C code:

for (int i = 0; i < N; i++) {
A[i] = A[i] + 1;

}

This translates into the following MIPS 32b assembly (ints are 4 bytes)

LOOP: lw $t1, 0($a0)
addi $t2, $t1, 1
sw $t2, 0($a0)
addi $a0, $a0, 4
addi $a1, $a1, -1
bne $a1, $0, LOOP

If we are executing the program, using an unlimited umber of execution units, we can see that we can execute up to 3
instructions per cycle, with 1.5 instructions per cycle on average. This results in 4 cycles per iteration. Is this the best we
can do? What if we could execute, as soon as the data is available, instead of the program order? Let us track the data
dependency:

Figure 1: Data dependency tracking graph

1

This way, we can see that we can use up to 6 instructions together. Assuming N is larger, this is roughly 6 instructions
per cycle on average, and roughly 1 iteration each cycle on average. However, execution is not in program order, what
about branches?

To increase the performance, and be able to utilise more execution units, we execute based on data dependency
instead of based only on the program order. This is called Out of Order Execution.

1.1 What about memory access latency
Let us consider a CPU, such that

Size Latency Latency (clocks @ 4.8GHz)
L1 cache (data) 32KB 0.8ns 4

L2 cache 256KB 2.5ns 12
L3 cache 8MB 9.3ns 45
Memory GBs 36.9ns 180

Table 1:

So, assuming the following characteristics for some program:

• 50% arithmetic / logic, 30% ld / st, and 20% control

• 10% of data memory operations miss with a 20 cycle miss penalty

• 2% of instructions miss instructions cache with a 20 cycle miss penalty

• Ideal CPI is CPI with no cache misses

So, since the PCI is the ideal CPI + average stalls per instruction, and our average stall per instruction is

30% · 10% · 20 + 2% · 20 = 1

Resulting in

Ideal CPI (no misses) CPI (with cache misses) % time spent waiting for misses (stalling)
Pipelined single issue 1.1 1.1 + 1 = 2.1 48%
Superscalar dual issue 0.7 0.7 + 1 = 1.7 59%

Table 2:

So as we see, most of the time is spent stalling on cache misses, and as the CPU gets faster, a higher percent of the
time is spent on stalls. So as we can see, there are many problems with program order execution, which brings us neatly
into why we want OOOE.

2 Concepts in Out of Order Execution (OOOE)
Modern CPUs execute instructions out of order to increase performance. This means that instructions are executed in
an order, not necessarily the same as the order specified by the program. However, program semantics are maintained
(so the results are equivalent to in order execution). This method was proposed by Tomasulo in 1967. It is required for
efficient use of multiple execution units, it improves the ILP (Instruction Level Parallelism, the ability to run instructions
in parallel), and is required for performance for general purpose code, since it better utilises multiple execution units,
and ensures execution when waiting for results (e.g. handling cache misses). However, building an OOOE CPU requires
complex hardware, since we need to rename registers, reorder results, and have the CPU speculate instructions while also
handling instances where it speculated incorrectly.

2

2.1 General scheme

Figure 2: OOOE general scheme

Fetch and decode instructions in parallel, but in order. This fills the instruction pool. It also executes ready instructions
from the instructions pool, where all data sources are ready, and needed execution resources are available. Once an
instruction is executed, we signal to all dependent instructions that the data is ready. Next, commit instructions in
parallel, but in order, and write back results (memory, registers). OOOE is typically superscalar, capable of fetching,
executing, and committing multiple instructions every cycle.

Let us consider the following program:

(1) lw $1, 0($4) ; $1 <- load[$4]
(2) add $8, $1, $2 ; $8 <- $1 + $2
(3) addi $5, $5, 1 ; $5 <- $5 + 1
(4) sub $6, $6, $3 ; $6 <- $6 - $3
(5) add $4, $5, $6 ; $4 <- $5 + $6
(6) add $9, $8, $4 ; $9 <- $8 + $4

So here, we have the following data flow graph:

Figure 3: Data flow graph

Should we run in order, then we have to first run 1 (long time), followed by 2, 3, and 4 simultaneously, and finally
5 and 6 sequentially. However, if we use OOOE, and follow the data dependency order, we can execute 1, and then
simultaneously 3, and 4, and then run 5 before 1 has even completed. We can then run 2, and then 6 sequentially.

We have a problem, false dependencies limit the number of instructions that can be fed into the instruction pool for
OOOE. We can resolve this by using register renaming. Here we maintain a mapping table architectural register. For
each instruction, we perform the following steps:

1. Source operands renaming: Check if source registers were mapped to physical register by a previous instruction and
use it

2. Destination operand allocation: Allocate a destination register from the pool of physical registers, and update the
mapping table

So, by following these for each instruction above, we achieve:

(1) lw $2, 0($1) [→$2p1] lw p1, 0($1)
(2) add $3, $2, $0 [→$3p2] add p2, p1, $0
(3) addi $1, $0, 77 [→$1p3] addi p3, $0, 77
(4) add $2, $3, $0 [→$2p4] add p4, p2, $0
(5) add $2, $1, $1 [→$2p5] add p5, p3, p3

Where the first column is the instructions, the middle the mapping, and the third the resultant instructions after the
mapping.

So as we can see, we have removed the false dependencies. Where earlier, both instructions 4, and 5, both wrote to
the same register, they no longer do so.

3

2.2 A superscalar OOOE Machine
2.2.1 In order

Some steps still have to take place in order, but can be done making use of superscalar as discussed last week. These steps
are:

1. Fetch and decode: Fetch and decode instructions in parallel, but in order

2. Rename: Data dependency analysis and structuring. Here we rename sources to physical registers, and allocate a
physical register to the destination

The ROB (Reorder Buffer) is the pool of instructions fetched, and waiting for retirement. This keeps track of speculative
instruction results before writing them to the architecture (register file or memory).

2.2.2 Out of order

1. Reservation Stations (RS): This is the pool of instructions waiting for execution. IT maintains per instance sources,
and a ready / not ready status.

2. Execute: We track which instructions are ready, meaning they have all sources ready. Then we dispatch ready
instructions to the execution ports in FIFO order. The RS handles only register dependencies, it does not handle
memory dependencies. After execution, we write back the value to the RS, and mark more sources as ready. The
RS then sends ”exe done” indication to ROB, and reclaims the RS entry.

2.2.3 In order

1. Retire (commit): Commit instructions received from ROB in parallel, but in order. Commit means writing results
to memory, and actual architectural registers.

2.3 Reorder Buffer (ROB)
The ROB holds instructions from allocation, and until retirement. They are held in the same order as in the program
(program execution order). It provides a large physical register space for register renaming, one physical register per ROB
entry.

• Physical register number = ROB entry number

• Each instruction has only 1 destination

• Buffers the execution results until retirement

The valid data is set after the instruction is executed, and the result is written to the physical register (i.e. to the ROB
entry).

Figure 4: ROB example

2.4 Architectural Register File
The ARF is also known as the Real Register File (RRF). It holds the architectural register file, where architectural registers
are numbered. The value is an architectural register is the value written to it by the last instruction committed which
wrote to this register:

4

#entry Arch Reg Data
o($1) 9AH
1($2) F34H

Table 3: RRF

2.5 Reservation Station / Issue Queue (RS / IQ)
This is the pool of all instructions that have not yet been executed. It holds an instruction’s attributes, and source data,
until it is executed, along with the instruction itself, sources, and destination (physical destination). When the instruction
is allocated in RS, the operand values are updated.

Operand form Data valid Get value from
Architectural register 1 RRF (arch reg file)

Physical register 1 ROB (p#)
Physical register 0 Wait for value

Table 4:

3 Instruction Fetch and branches in OOOE
3.1 Fetch and branches
OOOE fetches multiple instructions each cycle. The simplest approach is to simply fetch in program order, and ignore
branches (i.e. predicting branches as not taken). On average, 1 of 8 instructions is a branch. So what if a branch
happens to be taken? The fetch may have fetched the wrong instruction, and so on execution, such branch is marked as
’mispredicted’.

3.2 Jump misprediction, flush at retire
When a mispredicted jump retires, we flush the pipeline. When the jump commits, all the instructions remaining in the
pipe are younger than the jump, and are therefore from the wrong path. We need to reset the renaming map, so all the
registers are mapped to the architectural registers (RRF). This is OK, since there are no consumer of physical registers,
since the pipe is flushed. So we start fetching instructions from the correct path.

This has the disadvantage of a high misprediction penalty.
So OOOE requires an accurate branch predictor. It needs to predict branches at fetch/decode time, long before they

are executed. Misprediction causes a few cycles stall, since we need to flush and restart the pipeline, e.g. 5 cycles. Since
there is typically a branch roughly every 8 instructions, a 4 wide OOOE will fetch 8 instructions every 2 cycles. If it is
always wrong, a flush will take place every 9 instructions, which is 5 cycles of flush after 2 cycles of work, resulting in only
29% work. If it is 50% then we get 45% work. For 90% correct this is 5 cycles every 20 cycles of work, bringing us up to
80% work.

3.3 Branch prediction
We predict using history, where the branch history is updated based on actual execution. The prediction is made before
the instructions bytes are available. The hardware predicts the existence of branches in a group of instructions before
they are even fetched. We need to predict taken branches location, and target, i.e. where a branch instruction exists in
the fetched instructions, if the branch is taken or not taken, and the target of a predicted taken branch.

If the prediction rate is greater than 90%, then for an average of a branch per 5-10 instructions, we have >50-
100 instructions between mispredictions. A high prediction rate is crucial for OOOE, speculative execution, since on
misprediction everything is flushed, and the effective size of the window is determined by the prediction accuracy.

3.3.1 Predicting the target

An array called the target array is accessed using the branch address (branch PC). This can be implemented as an n
way set associative cache. The target array predicts the following:

• Instruction is a branch

• Branch target

• Branch type (e.g. Conditional / unconditional)
Since tags are usually partial, there is a trade off between space and accuracy, and we can get false hits. Multiple branches
can be aliased to the same entry. This is not a correctness issue, but rather only performance.

5

3.3.2 Predicting whether or not a branch is taken

We can predict whether a branch will or will not be taken based off heuristics in the program with either 1 or two
bits. These are based off state machines, with 2 or 4 states, and work exactly as you think. Each have advantages /
disadvantages, and certain series of branches that break them.

3.3.3 Putting it all together

For each instruction fetched, we need to predict if it is a taken branch, and predict its target. We can predict taken only
if the target is known. Next cycle PC is the first predicted taken branch, or sequential address, if no taken branch. If
possible, we can correct on decode branch existence, and target (if taken). On correction, we flush the wrong instructions
fetched by the in order pipeline of fetch and decode, and restart fetching on the correct instruction. Execution then checks
the branch prediction accuracy, and retirement updates the predictors, and corrects (flushes) the pipeline if needed.

3.4 Modern branch predictors
The above branch predictor is very basic. Modern branch predictors are much more complex. Branch prediction is an
active research field, and CBP (championship branch prediction) workshops are held, where predictor algorithms code
are submitted on a simulator framework, and compete by simulating predictors on real workloads that are not known in
advance. Progress and improvements are being implemented in modern CPUs.

4 Spectre background
4.1 Background
This is a class of security vulnerabilities that affect modern CPUs that perform branch prediction, and other forms of
speculation. Speculative execution resulting from a branch misprediction may leave observable side effects, that may
reveal private data to attackers. There are lots of different variants, and we will probably only discuss variant 1 here. The
public vulnerability name of variant one is the Bounds Check Bypass (BCB).

4.2 Cache side channel attacks
Secrets can be inferred by filling up a cache, and then getting the OS to load the secret into the cache. By establishing
which of my blocks in the cache were emptied, I can infer information about the secret, based off the mapping function
that mapped it into the cache..

4.3 BCB overview
Consider the OS function foo:

foo(int j) {
if (j >= 0 && j < MAX_ALLOWED) {

char x = os_table[j];
int y = os_table2[x * 64];
...

} else {
return ERROR;

}
}

The attacker trains the branch predictor by invoking a function foo with a valid input j many times. The attacker fools
foo to access the secret by invoding it with j = secret_address - os_table. j is out of bounds, but the predictor
still predicts based off the history that it is OK, and so foo speculatively accesses the secret. The attacker can then use
a cache side channel attack to infer the secret value.

6

	Speeding up Single Threading
	What about memory access latency

	Concepts in Out of Order Execution (OOOE)
	General scheme
	A superscalar OOOE Machine
	In order
	Out of order
	In order

	Reorder Buffer (ROB)
	Architectural Register File
	Reservation Station / Issue Queue (RS / IQ)

	Instruction Fetch and branches in OOOE
	Fetch and branches
	Jump misprediction, flush at retire
	Branch prediction
	Predicting the target
	Predicting whether or not a branch is taken
	Putting it all together

	Modern branch predictors

	Spectre background
	Background
	Cache side channel attacks
	BCB overview

